A GRU-Gated Attention Model for Neural Machine Translation

نویسندگان

  • Biao Zhang
  • Deyi Xiong
  • Jinsong Su
چکیده

Neural machine translation (NMT) heavily relies on an attention network to produce a context vector for each target word prediction. In practice, we find that context vectors for different target words are quite similar to one another and therefore are insufficient in discriminatively predicting target words. The reason for this might be that context vectors produced by the vanilla attention network are just a weighted sum of source representations that are invariant to decoder states. In this paper, we propose a novel GRU-gated attention model (GAtt) for NMT which enhances the degree of discrimination of context vectors by enabling source representations to be sensitive to the partial translation generated by the decoder. GAtt uses a gated recurrent unit (GRU) to combine two types of information: treating a source annotation vector originally produced by the bidirectional encoder as the history state while the corresponding previous decoder state as the input to the GRU. The GRU-combined information forms a new source annotation vector. In this way, we can obtain translation-sensitive source representations which are then feed into the attention network to generate discriminative context vectors. We further propose a variant that regards a source annotation vector as the current input while the previous decoder state as the history. Experiments on NIST Chinese-English translation tasks show that both GAtt-based models achieve significant improvements over the vanilla attentionbased NMT. Further analyses on attention weights and context vectors demonstrate the effectiveness of GAtt in improving the discrimination power of representations and handling the challenging issue of over-translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CASICT-DCU Neural Machine Translation Systems for WMT17

We participated in the WMT 2016 shared news translation task on English ↔ Chinese language pair. Our systems are based on the encoder-decoder neural machine translation model with the attention mechanism. We employ the Gated Recurrent Unit (GRU) with the linear associative connection to build deep encoder and address the unknown words with the dictionary replace approach. The dictionaries are e...

متن کامل

System Description of bjtu_nlp Neural Machine Translation System

This paper presents our machine translation system that developed for the WAT2016 evaluation tasks of ja-en, ja-zh, en-ja, zh-ja, JPCja-en, JPCja-zh, JPCen-ja, JPCzh-ja. We build our system based on encoder–decoder framework by integrating recurrent neural network (RNN) and gate recurrent unit (GRU), and we also adopt an attention mechanism for solving the problem of information loss. Additiona...

متن کامل

A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data

Gated Recurrent Unit (GRU) is a recently published variant of the Long Short-Term Memory (LSTM) network, designed to solve the vanishing gradient and exploding gradient problems. However, its main objective is to solve the long-term dependency problem in Recurrent Neural Networks (RNNs), which prevents the network to connect an information from previous iteration with the current iteration. Thi...

متن کامل

LSTM, GRU, Highway and a Bit of Attention: An Empirical Overview for Language Modeling in Speech Recognition

Popularized by the long short-term memory (LSTM), multiplicative gates have become a standard means to design artificial neural networks with intentionally organized information flow. Notable examples of such architectures include gated recurrent units (GRU) and highway networks. In this work, we first focus on the evaluation of each of the classical gated architectures for language modeling fo...

متن کامل

Effective Quantization Approaches for Recurrent Neural Networks

Deep learning, Recurrent Neural Networks (RNN) in particular have shown superior accuracy in a large variety of tasks including machine translation, language understanding, and movie frames generation. However, these deep learning approaches are very expensive in terms of computation. In most cases, Graphic Processing Units (GPUs) are in used for large scale implementations. Meanwhile, energy e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.08430  شماره 

صفحات  -

تاریخ انتشار 2017